Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 804
Filtrar
1.
J Hazard Mater ; 468: 133485, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38377898

RESUMO

Biodegradation is an efficient and cost-effective approach to remove residual penicillin G sodium (PGNa) from the environment. In this study, the effective PGNa-degrading strain SQW1 (Sphingobacterium sp.) was screened from contaminated soil using enrichment technique. The effects of critical operational parameters on PGNa degradation by strain SQW1 were systematically investigated, and these parameters were optimized by response surface methodology to maximize PGNa degradation. Comparative experiments found the extracellular enzyme to completely degrade PGNa within 60 min. Combined with whole genome sequencing of strain SQW1 and LC-MS analysis of degradation products, penicillin acylase and ß-lactamase were identified as critical enzymes for PGNa biodegradation. Moreover, three degradation pathways were postulated, including ß-lactam hydrolysis, penicillin acylase hydrolysis, decarboxylation, desulfurization, demethylation, oxidative dehydrogenation, hydroxyl reduction, and demethylation reactions. The toxicity of PGNa biodegradation intermediates was assessed using paper diffusion method, ECOSAR, and TEST software, which showed that the biodegradation products had low toxicity. This study is the first to describe PGNa-degrading bacteria and detailed degradation mechanisms, which will provide new insights into the PGNa biodegradation.


Assuntos
Penicilina Amidase , Sphingobacterium , Sphingobacterium/genética , Sphingobacterium/metabolismo , Penicilina Amidase/metabolismo , Penicilina G , Biodegradação Ambiental
2.
Appl Microbiol Biotechnol ; 108(1): 140, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38231394

RESUMO

Enzymes have become important tools in many industries. However, the full exploitation of their potential is currently limited by a lack of efficient and cost-effective methods for enzyme purification from microbial production. One technology that could solve this problem is foam fractionation. In this study, we show that diverse natural foam-stabilizing proteins fused as F-Tags to ß-lactamase, penicillin G acylase, and formate dehydrogenase, respectively, are able to mediate foaming and recovery of the enzymes by foam fractionation. The catalytic activity of all three candidates is largely preserved. Under appropriate fractionation conditions, especially when a wash buffer is used, some F-Tags also allow nearly complete separation of the target enzyme from a contaminating protein. We found that a larger distance between the F-Tag and the target enzyme has a positive effect on the maintenance of catalytic activity. However, we did not identify any particular sequence motifs or physical parameters that influenced performance as an F-tag. The best results were obtained with a short helical F-Tag, which was originally intended to serve only as a linker sequence. The findings of the study suggest that the development of molecular tags that enable the establishment of surfactant-free foam fractionation for enzyme workup is a promising method. KEY POINTS: • Foam-stabilizing proteins mediate activity-preserving foam fractionation of enzymes • Performance as an F-Tag is not restricted to particular structural motifs • Separation from untagged protein benefits from low foam stability and foam washings.


Assuntos
Fracionamento Químico , Penicilina Amidase , Formiato Desidrogenases , Indústrias , Tensoativos
3.
PLoS One ; 19(1): e0297149, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38241311

RESUMO

With the emergence of penicillin resistance, the development of novel antibiotics has become an urgent necessity. Semi-synthetic penicillin has emerged as a promising alternative to traditional penicillin. The demand for the crucial intermediate, 6-aminopicillanic acid (6-APA), is on the rise. Enzyme catalysis is the primary method employed for its production. However, due to certain limitations, the strategy of enzyme immobilization has also gained prominence. The magnetic Ni0.4Cu0.5Zn0.1Fe2O4 nanoparticles were successfully prepared by a rapid-combustion method. Sodium silicate was used to modify the surface of the Ni0.4Cu0.5Zn0.1Fe2O4 nanoparticles to obtain silica-coated nanoparticles (Ni0.4Cu0.5Zn0.1Fe2O4-SiO2). Subsequently, in order to better crosslink PGA, the nanoparticles were modified again with glutaraldehyde to obtain glutaraldehyde crosslinked Ni0.4Cu0.5Zn0.1Fe2O4-SiO2-GA nanoparticles which could immobilize the PGA. The structure of the PGA protein was analyzed by the PyMol program and the immobilization strategy was determined. The conditions of PGA immobilization were investigated, including immobilization time and PGA concentration. Finally, the enzymological properties of the immobilized and free PGA were compared. The optimum catalytic pH of immobilized and free PGA was 8.0, and the optimum catalytic temperature of immobilized PGA was 50°C, 5°C higher than that of free PGA. Immobilized PGA in a certain pH and temperature range showed better catalytic stability. Vmax and Km of immobilized PGA were 0.3727 µmol·min-1 and 0.0436 mol·L-1, and the corresponding free PGA were 0.7325 µmol·min-1 and 0.0227 mol·L-1. After five cycles, the immobilized enzyme activity was still higher than 25%.


Assuntos
Nanopartículas , Penicilina Amidase , Penicilina Amidase/química , Penicilina Amidase/metabolismo , Glutaral/química , Dióxido de Silício/química , Enzimas Imobilizadas/química , Catálise , Nanopartículas/química , Penicilinas , Fenômenos Magnéticos , Concentração de Íons de Hidrogênio , Temperatura , Estabilidade Enzimática
4.
Enzyme Microb Technol ; 171: 110323, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37703637

RESUMO

Acylases catalyze the hydrolysis of amide bonds. Penicillin G acylase (PGA) is used for the semi-synthesis of penicillins and cephalosporins. Although protein immobilization increases enzyme stability, the design of immobilized systems is difficult and usually it is empirically performed. We describe a novel application of our strategy for the Rational Design of Immobilized Derivatives (RDID) to produce optimized acylase-based immobilized biocatalysts for enzymatic bioconversion. We studied the covalent immobilization of the porcine kidney aminoacylase-1 onto aldehyde-based supports. Predictions of the RDID1.0 software and the experimental results led to the selection of glyoxyl-Sepharose CL 4B support and pH 10.0. One of the predicted clusters of reactive amino groups generates an enzyme-support configuration with highly accessible active sites, contributing with 82% of the biocatalyst's total activity. For Escherichia coli PGA, the predictions and experimental results show similar maximal amounts of immobilized protein and activity at pH 8.0 and 10.0 on glyoxyl-Sepharose CL 10B. However, thermal stability of the immobilized derivative is higher at pH 10.0 due to an elevated probability of multipoint covalent attachment. In this case, two clusters of amino groups are predicted to be relevant for PGA immobilization in catalytically competent configurations at pH 10.0, showing accessible active sites and contributing with 36% and 44% of the total activity, respectively. Our results support the usefulness of the RDID strategy to model different protein engineering approaches (site-directed mutagenesis or obtainment of fusion proteins) and select the most promising ones, saving time and laboratory work, since the in silico-designed modified proteins could have higher probabilities of success on bioconversion processes.


Assuntos
Enzimas Imobilizadas , Penicilina Amidase , Animais , Suínos , Enzimas Imobilizadas/metabolismo , Amidoidrolases/metabolismo , Estabilidade Enzimática , Escherichia coli/metabolismo , Concentração de Íons de Hidrogênio , Penicilina Amidase/química
5.
Protein Expr Purif ; 210: 106327, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37348663

RESUMO

Penicillin G acylase (PGA) is a strategic enzyme in the production processes of beta-lactam antibiotics. High demand for ß-lactam semisynthetic antibiotics explain the genetic and biochemical engineering strategies devoted towards novel ways for PGA production and application. This work presents a fermentation process for the heterologous production of PGA from Alcaligenes faecalis in Bacillus megaterium with optimization. The thermal stability from A. faecalis PGA is considerably higher than other described PGA and the recombinant enzyme is secreted to the culture medium by B. megaterium, which facilitates the separation and purification steps. Media optimization using fractional factorial design experiments was used to identify factors related to PGA activity detection in supernatant and cell lysates. The optimized medium resulted in almost 6-fold increased activity in the supernatant samples when compared with the basal medium. Maximum enzyme activity in optimized medium composition achieves values between 135 and 140 IU/ml. The results suggest a promising model for recombinant production of PGA in B. megaterium with possible extracellular expression of the active enzyme.


Assuntos
Alcaligenes faecalis , Bacillus megaterium , Penicilina Amidase , Alcaligenes faecalis/genética , Alcaligenes faecalis/metabolismo , Penicilina Amidase/genética , Penicilina Amidase/metabolismo , Antibacterianos , beta-Lactamas
6.
Bioorg Chem ; 136: 106533, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37084587

RESUMO

Penicillin G acylase (PGA) is a key biocatalyst for the enzymatic production of ß-lactam antibiotics, which can not only catalyze the synthesis of ß-lactam antibiotics but also catalyze the hydrolysis of the products to prepare semi-synthetic antibiotic intermediates. However, the high hydrolysis and low synthesis activities of natural PGAs severely hinder their industrial application. In this study, a combinatorial directed evolution strategy was employed to obtain new PGAs with outstanding performances. The best mutant ßF24G/ßW154G was obtained from the PGA of Achromobacter sp., which exhibited approximately a 129.62-fold and a 52.55-fold increase in specific activity and synthesis/hydrolysis ratio, respectively, compared to the wild-type AsPGA. Thereafter, this mutant was used to synthesize amoxicillin, cefadroxil, and ampicillin; all conversions > 99% were accomplished in 90-135 min with almost no secondary hydrolysis byproducts produced in the reaction. Molecular dynamics simulation and substrate pocket calculation revealed that substitution of the smallest glycine residue at ßF24 and ßW154 expanded the binding pocket, thereby facilitating the entry and release of substrates and products. Therefore, this novel mutant is a promising catalyst for the large-scale production of ß-lactam antibiotics.


Assuntos
Achromobacter , Penicilina Amidase , Penicilina Amidase/metabolismo , Achromobacter/metabolismo , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Ampicilina/metabolismo , Amoxicilina/metabolismo , Monobactamas
7.
Int J Mol Sci ; 24(3)2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36768158

RESUMO

The self-assembling of nanosized materials is a promising field for research and development. Multiple approaches are applied to obtain inorganic, organic and composite nanomaterials with different functionality. In the present work, self-assembling nanocomplexes (NCs) were prepared on the basis of enzymes and polypeptides followed by the investigation of the influence of low-molecular weight biologically active compounds on the properties of the NCs. For that, the initially possible formation of catalytically active self-assembling NCs of four hydrolytic enzymes with nine effectors was screened via molecular modeling. It allowed the selection of two enzymes (hexahistidine-tagged organophosphorus hydrolase and penicillin acylase) and two compounds (emodin and naringenin) having biological activity. Further, such NCs based on surface-modified enzymes were characterized by a batch of physical and biochemical methods. At least three NCs containing emodin and enzyme (His6-OPH and/or penicillin acylase) have been shown to significantly improve the antibacterial activity of colistin and, to a lesser extent, polymyxin B towards both Gram-positive bacteria (Bacillus subtilis) and Gram-negative bacteria (Escherichia coli).


Assuntos
Emodina , Penicilina Amidase , Antibacterianos/farmacologia , Antibacterianos/química , Peptídeos/química , Arildialquilfosfatase/química , Compostos Orgânicos
8.
Molecules ; 27(21)2022 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-36364414

RESUMO

Penicillin G acylase (PGA) from Escherichia coli was immobilized on vinyl sulfone (VS) agarose. The immobilization of the enzyme failed at all pH values using 50 mM of buffer, while the progressive increase of ionic strength permitted its rapid immobilization under all studied pH values. This suggests that the moderate hydrophobicity of VS groups is enough to transform the VS-agarose in a heterofunctional support, that is, a support bearing hydrophobic features (able to adsorb the proteins) and chemical reactivity (able to give covalent bonds). Once PGA was immobilized on this support, the PGA immobilization on VS-agarose was optimized with the purpose of obtaining a stable and active biocatalyst, optimizing the immobilization, incubation and blocking steps characteristics of this immobilization protocol. Optimal conditions were immobilization in 1 M of sodium sulfate at pH 7.0, incubation at pH 10.0 for 3 h in the presence of glycerol and phenyl acetic acid, and final blocking with glycine or ethanolamine. This produced biocatalysts with stabilities similar to that of the glyoxyl-PGA (the most stable biocatalyst of this enzyme described in literature), although presenting just over 55% of the initially offered enzyme activity versus the 80% that is recovered using the glyoxyl-PGA. This heterofuncionality of agarose VS beads opens new possibilities for enzyme immobilization on this support.


Assuntos
Penicilina Amidase , Estabilidade Enzimática , Enzimas Imobilizadas/química , Escherichia coli/metabolismo , Concentração de Íons de Hidrogênio , Concentração Osmolar , Penicilina Amidase/química , Sefarose/química
9.
Biotechnol Bioeng ; 119(11): 3117-3126, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36030473

RESUMO

The kinetics of cephalexin synthesis and hydrolysis of the activated acyl-donor precursor phenylglycine methyl ester (PGME) were characterized under a broad range of substrate concentrations. A previously developed model by Youshko-Svedas involving the formation of the acyl-enzyme complex followed by binding of the nucleophilic ß-lactam donor does not fully estimate the maximum reaction yields for cephalexin synthesis at different concentrations using initial-rate data. 7-aminodesacetoxycephalosporanic acid (7-ADCA) was discovered to be a potent inhibitor of cephalexin hydrolysis, which may account for the deviation from model predictions. Three kinetic models were compared for cephalexin synthesis, with the model incorporating competitive inhibition due to 7-ADCA yielding the best fit. Additionally, the ßF24A variant and Assemblase® did not exhibit significantly different kinetics for the synthesis of cephalexin compared to the wild-type, for the concentration range evaluated and for both initial-rate experiments and time-course synthesis experiments. Lastly, a continuous stirred-tank reactor for cephalexin synthesis was simulated using the model incorporating competitive inhibition by 7-ADCA, with clear tradeoffs observed between productivity, fractional yield, and PGME conversion.


Assuntos
Penicilina Amidase , Cefalexina/metabolismo , Cefalosporinas , Cinética , Penicilina Amidase/química , Penicilina Amidase/genética , Propilenoglicóis , beta-Lactamas
10.
J Chromatogr A ; 1678: 463365, 2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-35907366

RESUMO

Penicillin G acylase (PGA), as a key enzyme, is increasingly used in the commercial production of semi-synthetic ß-lactam antibiotics (SSBAs). With the substitution of conventional chemical synthesis by emerging bioconversion processes, more and more PGAs fermented from different types of strains such as Escherichia coli (E. coli, ATCC 11105), Achromobacter sp. CCM 4824 and Providencia rettgeri (ATCC 31052) have been used in this kind of enzymatic processes. As an intermediate reaction catalyst, PGA protein and its presence in the final products may cause a potential risk of human allergic reaction and bring challenges for both quality and process controls. To achieve qualitative and quantitative analysis of PGAs and their residues in SSBAs, a tryptic digestion coupled with liquid chromatography - tandem mass spectrometry (LC-MS/MS) method was developed and proposed because of advantages like high selectivity and sensitivity. A suitable filter aided sample preparation (FASP) method was also used to remove matrix interference and to enrich the target PGA retained in the ultrafiltration membrane for an efficient enzymatic hydrolysis and subsequent accurate MS detection. Finally, twelve batches of PGAs from eight companies were identified and categorized into two types of strains (E. coli and Achromobacter sp. CCM 4824) using proteomic analysis. In total nine batches of five types of SSBAs (amoxicillin, cephalexin, cefprozil, cefdinir and cefaclor) from eight manufacturers were selected for investigation. Trace levels of PGA residual proteins ranging from 0.01 to 0.44 ppm were detected in six batches of different SSBAs which were far lower than the safety limit of 35 ppm reported by DSM, a manufacturer with expertise in the production of SSBAs by enzymatic processes. The developed FASP with LC-MS/MS method is superior to traditional protein assays in terms of selectivity, sensitivity and accuracy. Moreover, it could provide in-depth analysis of amino acid sequences and signature peptides contributing to assignment of the strain sources of PGAs. This method could become a promising and powerful tool to monitor enzymatic process robustness and reliability of this kind of SSBAs manufacturing.


Assuntos
Penicilina Amidase , Humanos , Antibacterianos/metabolismo , Cromatografia Líquida , Escherichia coli/metabolismo , Penicilina Amidase/química , Penicilina Amidase/metabolismo , Proteômica , Reprodutibilidade dos Testes , Espectrometria de Massas em Tandem
11.
Science ; 376(6599): 1321-1327, 2022 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-35709255

RESUMO

The emergence of new therapeutic modalities requires complementary tools for their efficient syntheses. Availability of methodologies for site-selective modification of biomolecules remains a long-standing challenge, given the inherent complexity and the presence of repeating residues that bear functional groups with similar reactivity profiles. We describe a bioconjugation strategy for modification of native peptides relying on high site selectivity conveyed by enzymes. We engineered penicillin G acylases to distinguish among free amino moieties of insulin (two at amino termini and an internal lysine) and manipulate cleavable phenylacetamide groups in a programmable manner to form protected insulin derivatives. This enables selective and specific chemical ligation to synthesize homogeneous bioconjugates, improving yield and purity compared to the existing methods, and generally opens avenues in the functionalization of native proteins to access biological probes or drugs.


Assuntos
Insulina , Penicilina Amidase , Peptídeos , Engenharia de Proteínas , Sequência de Aminoácidos , Humanos , Insulina/análogos & derivados , Insulina/biossíntese , Lisina/química , Penicilina Amidase/química , Penicilina Amidase/genética , Peptídeos/química , Peptídeos/genética , Engenharia de Proteínas/métodos
12.
Science ; 376(6599): 1270-1271, 2022 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-35709283
13.
Chem Commun (Camb) ; 58(19): 3166-3169, 2022 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-35170593

RESUMO

This article reports the synthesis and characterization of a novel self-immolative linker, based on thiocarbonates, which releases a free thiol upon activation via enzymes. We demonstrate that thiocarbonate self-immolative linkers can be used to detect the enzymes penicillin G amidase (PGA) and nitroreductase (NTR) with high sensitivity using absorption spectroscopy. Paired with modern thiol amplification technology, the detection of PGA and NTR were achieved at concentrations of 160 nM and 52 nM respectively. In addition, the PGA probe was shown to be compatible with both biological thiols and enzymes present in cell lysates.


Assuntos
Nitrorredutases/análise , Penicilina Amidase/análise , Compostos de Sulfidrila/química , Estrutura Molecular , Nitrorredutases/metabolismo , Penicilina Amidase/metabolismo , Espectrometria de Fluorescência
14.
J Biomater Sci Polym Ed ; 33(7): 823-846, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34935604

RESUMO

In this work, Fe3O4 nanoparticles (NPs) was synthesized by inverting microemulsion method. After that, based on the physical and chemical properties of tannic acid (TA), poly tannic acid (PTA) was coated on Fe3O4 NPs surface. Fe3O4 NPs coated with PTA, on the one hand, was used to immobilize Penicillin G acylase (PGA) by physical adsorption. On the other hand, it was modified by glutaraldehyde (GA). GA grafting rate (Gr-GA) was optimized, and the Gr-GA was 30.0% under the optimum conditions. Then, through the Schiff base reaction between the glutaraldehyde group and PGA amino group, this covalent immobilization of PGA was further realized under mild conditions. Finally, the structures of every stage of magnetic composites were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), vibration magnetometer (VSM) and transmission electron microscopy (TEM), respectively. The results indicated that the enzyme activity (EA), enzyme activity recovery (EAR) and maximum load (ELC) of the immobilized PGA were 26843 U/g, 80.2% and 125 mg/g, respectively. Compared to the physical immobilization of PGA by only coating PTA nanoparticles, further modified nanoparticles by GA showed higher catalytic stability, reusability and storage stability.


Assuntos
Nanopartículas de Magnetita , Penicilina Amidase , Enzimas Imobilizadas/química , Glutaral/química , Fenômenos Magnéticos , Nanopartículas de Magnetita/química , Penicilina Amidase/química , Taninos/química
15.
Appl Biochem Biotechnol ; 194(4): 1682-1698, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34845585

RESUMO

Enzymatic catalysis has been recognized as a green alternative to classical chemical route for synthesis of cephalexin (CEX). However, its industrial practice has been severely limited by the low productivity due to the low solubility of 7-amino-3-deacetoxycephalosporanic acid (7-ADCA) and high hydrolysis of D-phenylglycine methyl ester (PGME). In this work, the enhanced dissolution of 7-ADCA in the presence of PGME for efficient enzymatic synthesis of CEX was investigated. Results showed that the solubility of 7-ADCA in water could be improved by PGME. Moreover, supersaturated solution of 7-ADCA could be created in the presence of PGME by a pH shift strategy. The supersaturated solution of 7-ADCA possess good stability, which could be explained in terms of the inhibition of 7-ADCA precipitation due to the presence of PGME. The interaction between 7-ADCA and PGME is explored by spectroscopic determination and DFT analysis and the mechanism of enhanced dissolution of 7-ADCA in the presence of PGME is discussed and proposed. The feasibility of supersaturated solution of 7-ADCA for the enzymatic synthesis of CEX is evaluated. It was demonstrated that high conversion ratio (> 95.0%) and productivity (> 240.0 mmol/L/h) was obtained under a wide range of reaction conditions, indicating that the supersaturated solution system was highly superior to conventional homogeneous solution system. The information obtained in this work will be helpful to industrial production of CEX via enzymatic route.


Assuntos
Cefalexina , Penicilina Amidase , Cefalexina/química , Cefalosporinas , Enzimas Imobilizadas , Glicina/análogos & derivados , Penicilina Amidase/química , Propilenoglicóis , Solubilidade , Temperatura
16.
Biotechnol Appl Biochem ; 69(2): 629-641, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33650711

RESUMO

In this work, Fe3 O4 nanoparticles (NPs) were coated with polydopamine (PDA) to structure Fe3 O4 @PDA NPs by the spontaneous oxygen-mediated self-polymerization of dopamine (DA) in an aqueous solution of pH = 8.5. The fabricated Fe3 O4 @PDA NPs were grafted by glutaraldehyde to realize the immobilization of penicillin G acylase (PGA) under mild conditions. The carriers of each stage were characterized and investigated by transmission electron microscopy, X-ray diffraction, Fourier transform infrared, and vibrating sample magnetometry. To improve the catalytic activity and stability of immobilized PGA, the immobilization conditions were investigated and optimized. Under the optimal immobilization conditions, the enzyme loading capacity, enzyme activity, and enzyme activity recovery of immobilized PGA were 114 mg/g, 26,308 U/g, and 78.5%, respectively. In addition, the immobilized PGA presented better temperature and pH stability compared with free PGA. The reusability study ensured that the immobilized PGA showed an excellent repeating application performance. In particular, the recovery rate of immobilized PGA could reach 94.8% and immobilized PGA could retain 73.0% of its original activity after 12 cycles, indicating that the immobilized PGA exhibited a high operation stability and broad application potential in the biocatalysis field.


Assuntos
Nanopartículas de Magnetita , Nanopartículas , Penicilina Amidase , Estabilidade Enzimática , Enzimas Imobilizadas/química , Glutaral/química , Concentração de Íons de Hidrogênio , Indóis , Nanopartículas de Magnetita/química , Nanopartículas/química , Penicilina Amidase/química , Polímeros , Temperatura
17.
Enzyme Microb Technol ; 150: 109896, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34489019

RESUMO

A novel magnetic thermosensitive polymer composite carrier with target spacing was developed. In this strategy, thermosensitive polymer grafted on magnetic Fe3O4 for enhancing immobilized penicillin G acylase (PGA) performance and introduce immobilized target spacing into magnetic carriers for the first time. Fe3O4 nanoparticles were synthesized by a reverse microemulsion method. The modifier used was the silane coupling agent γ-methylacryloxypropyl trimethoxysilane (KH570) and then reacting with a reversible-adaptive fragmentation chain transfer (RAFT) reagent, 2-cyano-2-propyldodecyl trithiocarbonate (CPDTC). The thermo-sensitive nanoparticle-composite carrier of Fe3O4-grafted-poly N, N-diethyl acrylamide-block-poly ß-Hydroxyethyl methacrylate-block-random copolymer of glycidyl methacrylate and methyl methacrylate (Fe3O4-g-PDEA-b-PHEMA-b-P(MMA-co-GMA)) were synthesized by RAFT polymerization technique that used N, N-diethyl acrylamide (DEA), ß-Hydroxyethyl methacrylate (HEMA), Glycidyl methacrylate (GMA) and Methyl methacrylate (MMA) as monomer, then which were employed as functional carriers for the immobilization of PGA. Within the carrier, the epoxy group of GMA segment was a target immobilization site for PGA and the introduction of MMA reflected the target space of immobilized PGA to improve catalytic activity and catalytic activity recovery rate of the immobilized PGA. Characterizations demonstrated that the triblock copolymers grafted Fe3O4 nanoparticles were successfully fabricated by the structure design. Besides, under these circumstances the enzyme activity (EA), enzyme loading capacity (ELC) and catalytic activity recovery ration (CAR) reached 31235 U/g, 128.39 mg/g and 93.32 %, respectively. The catalytic activity of immobilized PGA maintained 87.4 % of initial value and the recovery ratio (R) of immobilized PGA reached 96.22 % after recycling 12 times. Furthermore, the immobilized PGA exhibited advantages of low temperature homogeneous catalysis and magnetic separation, which indicated broad application prospects in the biocatalysts' field.


Assuntos
Enzimas Imobilizadas , Penicilina Amidase , Fenômenos Magnéticos , Magnetismo , Polímeros
18.
Bioprocess Biosyst Eng ; 44(12): 2481-2489, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34379179

RESUMO

In this study, the optimization of the amount of enzyme consumed in the enzymatic phase of substitution of butanol solvent instead of methanol in the powder washing phase after filtration was investigated. To perform this study, different amounts of the enzyme penicillin G amidase (PGA) were tested in reactions with the same conditions. The highest efficiency was observed in the reaction that the ratio of penicillin powder to the amount of enzyme was 2:1. In this reaction, for every 100 g of penicillin consumed, 50 g of the PGA was used. Replacement of butanol instead of methanol after filtration, the powder obtained from this step was washed with butanol instead of methanol and the powder obtained from this step was examined after drying. The resulting solvent powder was very small and the drying speed of the powder increased compared to the time of methanol usage. Optimizing the amount of enzyme in this process due to the high cost of the enzyme made this reaction more economically viable at the end of this study. In this study, for the first time, butanol was used as a suitable substitute for methanol and the ratio of enzyme use to penicillin powder was optimized. This research deals with the future perspective in the field of research in this regard.


Assuntos
Amônia/química , Controle de Custos , Indústria Farmacêutica/organização & administração , Enzimas Imobilizadas/química , Ácido Penicilânico/síntese química , Penicilina Amidase/química , Solventes/química , Indústria Farmacêutica/economia , Fermentação , Ácido Penicilânico/química
19.
Appl Biochem Biotechnol ; 193(9): 2843-2857, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34019251

RESUMO

Tris is an extensively used buffer that presents a primary amine group on its structure. In the present work trypsin, chymotrypsin and penicillin G acylase (PGA) were immobilized/stabilized on glyoxyl agarose in presence of different concentrations of Tris (from 0 to 20 mM). The effects of the presence of Tris during immobilization were studied analyzing the thermal stability of the obtained immobilized biocatalysts. The results indicate a reduction of the enzyme stability when immobilized in the presence of Tris. This effect can be observed in inactivations carried out at pH 5, 7, and 9 with all the enzymes assayed. The reduction of enzyme stability increased with the Tris concentration. Another interesting result is that the stability reduction was more noticeable for immobilized PGA than in the other immobilized enzymes, the biocatalysts prepared in presence of 20 mM Tris lost totally the activity at pH 7 just after 1 h of inactivation, while the reference at this time still kept around 61 % of the residual activity. These differences are most likely due to the homogeneous distribution of the Lys groups in PGA compared to trypsin and chymotrypsin (where almost 50% of Lys group are in a small percentage of the protein surface). The results suggest that Tris could be affecting the multipoint covalent immobilization in two different ways, on one hand, reducing the number of available glyoxyl groups of the support during immobilization, and on the other hand, generating some steric hindrances that difficult the formation of covalent bonds.


Assuntos
Enzimas Imobilizadas/química , Glioxilatos/química , Penicilina Amidase/química , Sefarose/química , Trometamina/química , Tripsina/química , Soluções Tampão , Estabilidade Enzimática , Concentração de Íons de Hidrogênio
20.
Angew Chem Int Ed Engl ; 60(29): 15972-15979, 2021 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-33844389

RESUMO

The thiol group of the cysteine side chain is arguably the most versatile chemical handle in proteins. To expand the scope of established and commercially available thiol bioconjugation reagents, we genetically encoded a second such functional moiety in form of a latent thiol group that can be unmasked under mild physiological conditions. Phenylacetamidomethyl (Phacm) protected homocysteine (HcP) was incorporated and its latent thiol group unmasked on purified proteins using penicillin G acylase (PGA). The enzymatic deprotection depends on steric accessibility, but can occur efficiently within minutes on exposed positions in flexible sequences. The freshly liberated thiol group does not require treatment with reducing agents. We demonstrate the potential of this approach for protein modification with conceptually new schemes for regioselective dual labeling, thiol bioconjugation in presence of a preserved disulfide bond and formation of a novel intramolecular thioether crosslink.


Assuntos
Proteínas/química , Compostos de Sulfidrila/química , Cisteína/química , Dissulfetos/química , Penicilina Amidase/química , Penicilina Amidase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...